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Abstract 

We modify the Zhang-McFarlane deep convection scheme in the Community Atmosphere 

Model version 5 to couple it with a unified parameterization for boundary-layer turbulence and 

shallow convection, i.e. Cloud Layers Unified by Binormals (CLUBB). By assuming a lognormal 

distribution of entrainment rate across the entire moist convective regimes, we link mass fluxes 

between shallow and deep convection, which are partitioned by the entrainment rate of the 

shallowest deep convective plume. Hence, a new deep convective closure is established which is 

coupled to the sub-grid vertical motion variability in CLUBB. The convection feedback (or memory) 

effects are also considered to decrease the entrainment spectrum width and enhance the vertical 

velocity variability that further affect deep convection. Results show that the revised scheme 

improves the precipitation simulations in terms of the mean state and variability at various 

timescales, such as the alleviated double-intertropical convergence zone and more realistic 

simulations of the seasonal variation of monsoon precipitation over East Asia, Madden‐Julian 

Oscillation, and precipitation diurnal phase propagations downstream of large terrains. The 

improvements are still seen in many aspects such as the mean-state precipitation when turning off 

the convection feedback impacts in the revised scheme, emphasizing the benefits of using the 

modified mass-flux closure. However, the convection feedbacks have considerable effects on the 

precipitation diurnal cycle simulations over regions with late-afternoon precipitation peaks. Overall, 

the revised scheme provides a unified treatment for sub-grid vertical motions across regimes of 

boundary-layer turbulence, shallow convection and deep convection, leading to better-simulated 

precipitation at various timescales. 
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Plain Language Summary 

The physical consistency between shallow and deep convection is an important but largely 

misrepresented aspect in climate models. In the atmosphere, convective updraft plumes usually 

differ in their fractional entrainment rate, with weaker entrainment favoring a more vertical 

extension of the plume. Here, we modify the Zhang-McFarlane convective parameterization in 

CAM5 to couple it with a unified parameterization for boundary-layer turbulence and shallow 

convection, i.e. CLUBB. A continuous distribution is used to represent the spectrum of entrainment 

rates across the entire moist convective regimes and to link mass fluxes between shallow and deep 

convection. This couples deep convection to CLUBB and provides a unified treatment for sub-grid 

vertical motions across regimes of boundary-layer turbulence, shallow convection and deep 

convection. In addition, the convection memory effects are included to affect deep convection via 

changing the entrainment spectrum width and vertical velocity variability. The revised scheme 

performs much better than the original one in the simulated precipitation variability at various 

timescales, such as the alleviated double-intertropical convergence zone and improved monsoon 

precipitation, Madden‐Julian Oscillation, and continental precipitation diurnal variation. Both of 

the modifications related to the mass flux closure and convection feedback impacts are important 

for the improved model performance.  
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1 Introduction  

Cumulus convection mainly induced by surface fluxes, large-scale convergence, and 

atmospheric radiative cooling can occur at a wide range of temporal and spatial scales in the globe 

(Arakawa, 2004; Rio et al., 2019). It is of vital importance to cloud and precipitation formation and 

can interact with the latent heating associated with precipitation process. Moreover, cumulus 

convection is key for redistributing atmospheric heat and moisture and modulating the energy and 

hydrological cycles on the Earth (Arakawa & Schubert 1974; Raymond 1994). However, it is hard 

to represent convection in both global and regional climate models (GCMs and RCMs) that are 

generally unable to explicitly resolve the fine-scale convective processes. As a result, convective 

parameterizations have to be used in these models to formulate the statistical effects on the grid-

mean atmospheric properties of convection (Arakawa, 2004).  

Many convective parameterizations have been developed with different levels of complexity 

(Arakawa & Schubert, 1974; Kain & Fritsch, 1990; Zhang & McFarlane, 1995; Emanuel & 

Zivkovic-Rothman, 1999; Grell & Devenyi, 2002; Song & Zhang, 2011; Park et al., 2014a). These 

parameterizations have large uncertainties in their physical assumptions and tunable parameters. In 

GCMs, many cloud and precipitation biases in terms of both the mean state (e.g. the spurious double 

intertropical convergence zone [ITCZ], unrealistic partitioning between convective and stratiform 

precipitation, etc.) and variability at various scales (e.g. incorrect diurnal phase of continental 

precipitation, underestimated Madden‐Julian Oscillation [MJO; Madden & Julian, 1971], etc.) are 

attributed, at least in part, to deficiencies in convective parameterizations (e.g., Yang et al., 2013; 

Yuan et al. 2013; Zhang et al., 2019; Xie et al., 2019). To avoid the large uncertainties and systematic 

biases associated with convective parameterizations, some climate models are now run at 
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convection-permitting scales that can partly or even entirely resolve convective processes owing to 

the rapid growth of computing power (Dirmeyer et al., 2012; Li et al., 2018; Marsham et al., 2013; 

Sato et al., 2008; Stratton & Stirling, 2012; Tsushima et al., 2014). An alternate but much less 

expensive approach is to run super‐parameterized models that use cloud‐resolving model instead 

of convective parameterization in each grid cell of a GCM (Grabowski, 2001; Khairoutdinov et al., 

2005; Kooperman et al., 2013; Randall et al., 2003; Zhang & Chen, 2016; Zhang et al., 2017; 

Hannah et al., 2020). 

However, undoubtedly, parameterization itself is a summary of our knowledge about the real 

atmosphere and its performance can reflect how well we understand the physical processes it 

represents (Rio et al., 2019). Recently, Emanuel (2020) pointed out that we need to make efforts to 

find out the reason why climate models with convective parameterizations fail to produce the large-

scale precipitation phenomenon if such phenomenon is “parameterizable” (i.e., not sensitive to the 

detailed arrangement of individual convective cells), suggesting that we might compute too much 

and think too little. In addition, due to the needs for long integration length and multiple ensemble 

members, climate simulations adopted in climate change projection still use relatively coarse grid 

spacing (Eyring et al., 2016). Therefore, it is still necessary to continue the development of 

convection parameterizations. 

Many efforts have been devoted to improving the behaviors of convective parameterizations 

in the past decades. For example, Zhang and Wang (2006) applied a convective closure based on 

the large-scale generation of convective available potential energy (CAPE) in the free troposphere 

(Zhang, 2002) in the Zhang-McFarlane (ZM) convective parameterization in the National Center 

for Atmospheric Research (NCAR) Community Climate System Model version 3. Compared to the 
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original version that used the total CAPE consumption as a closure, their new closure reduced the 

sensitivity of convection to surface forcing and thus alleviated the double-ITCZ problem. 

Meanwhile, several studies have shown that the simulated precipitation diurnal cycle can be 

improved via using different functions for convection triggering (Xie & Zhang, 2000; Tawfik et al., 

2017; Xie et al., 2019), employing new diagnostic or prognostic quantities for convective closure 

(Fuchs & Raymond, 2007), or modifying the formulation of convective entrainment rates (Piriou et 

al., 2007; Stirling & Stratton, 2012). It was also reported that structural modifications or parameter 

optimizations in convective parameterizations can improve the simulations of MJO and ENSO 

(Boyle et al., 2015; Lu & Ren, 2016; Liu et al., 2019; Neale et al., 2008) in GCMs. 

In convective parameterizations, one of the well-known deficiencies is the unrealistic transition 

from shallow to deep convection, which is thought to be responsible for many of the cloud and 

precipitation biases mentioned above. Various approaches have been proposed to overcome this 

problem. For example, Bechtold et al. (2014) modified the CAPE-based closure in which parts of 

the CAPE production are consumed by shallow convection under particular conditions. Alternately, 

Rio et al. (2009) linked the triggering and intensity of deep convection to boundary-layer thermals 

that can reach the lifting condensation level (LCL). Both the above two approaches help improve 

the precipitation diurnal cycle simulations over land. Park (2014a; 2014b) developed a new 

parameterization that represents shallow and deep convection in a unified way, which can better 

simulate the continental precipitation diurnal variation and the MJO. Several fully unified 

parameterizations were also presented in some studies that included boundary-layer turbulence and 

all types of convection in a single framework (Storer et al., 2015; Tan et al., 2018; Sušelj et al., 

2019). For example, Sušelj et al. (2019) extended the eddy-diffusivity mass-flux (EDMF) approach 
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to contain multiple plumes representing dry, shallow, and deep convective updrafts and 

precipitation-driven downdrafts. The new parameterization can well simulate the transitions across 

various convective regimes in a single-column model (SCM).  

In our recent work (Yang et al., 2020), we modified the ZM deep convective closure in the 

Community Atmosphere Model version 5 (CAM5; Neale et al., 2010) coupled with a third‐order 

turbulence closure parameterization, i.e. Cloud Layers Unified by Binormals (CLUBB; Golaz et 

al., 2002; Larson & Golaz, 2005) (hereafter CAM5-CLUBB). In the modified closure, a part of 

CAPE diagnosed from the heating and moistening profiles in CLUBB is reserved for shallow 

convection, which helps suppress deep convection until shallow convection has sufficiently 

moistened the lower troposphere, leading to improved precipitation diurnal cycle simulation. 

However, compared to the original closure, the modified one still shows similar bias features in 

many aspects, such as the spurious double-ITCZ, too weak MJO, and unrealistic monsoon migration. 

Besides, inconsistency still exists between different components within the ZM scheme. Specifically, 

the closure is based on CAPE which is calculated with a fixed entrainment rate for an air parcel 

lifted from the convective launch layer, while the updraft cloud properties are based on an ensemble 

of plumes with a range of different entrainment rates. To improve the consistency between shallow 

and deep convection, as well as between the deep convective closure and updraft plumes, here we 

modify the closure of the ZM convective parameterization and couple it with CLUBB to provide a 

unified treatment for sub-grid vertical motions across regimes of boundary-layer turbulence, 

shallow convection and deep convection. A lognormal distribution is assumed to represent the 

spectrum of entrainment rates across the entire moist convective regimes, with the spectrum width 

varying with the development of convection. The entrainment rate of the shallowest plume for deep 
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convection is used to partition mass fluxes between deep and shallow convection, with the latter 

diagnosed from CLUBB. We will show that the revised ZM scheme markedly improves the 

simulated precipitation variability at various timescales in CAM5-CLUBB. 

Section 2 depicts the modifications in the ZM convective parameterization scheme, including 

those related to the assumed distribution of entrainment rate, deep convective closure, and impacts 

of convection feedback. The model experiments and observational datasets are introduced in section 

3. In section 4 we evaluate the impacts of the modified scheme on the precipitation simulation at 

various timescales. We first assess the results from the SCM experiments briefly and then focus on 

the GCM simulated precipitation in terms of the mean state, seasonal evolution, MJO, and diurnal 

variation. A summary of the main results is given in section 5. 

2 Revised Zhang–McFarlane deep convective parameterization  

2.1 Convective closure based on assumed entrainment distribution 

In the original ZM scheme, the updraft cloud ensemble consists of multiple updraft plumes 

featured by different fractional entrainment rates (𝜆) to represent clouds reaching different heights. 

The shallowest deep convective plume has the maximum entrainment rate 𝜆0 and detrains at height 

𝑧0  corresponding to the minimum saturated moist static energy in the vertical. Therefore, the 

updraft plumes with entrainment rate exceeding 𝜆0 and detraining below 𝑧0 can be categorized 

as shallow convection, which is not parameterized in ZM but implicitly represented by CLUBB that 

provides a unified treatment for boundary-layer turbulence and shallow convection. Previous studies 

have used the entrainment rates diagnosed from large-eddy simulations to evaluate the distributions 

of entrainment rate in convective parameterizations (e.g., de Rooy et al. 2013). Recently, based on 
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a large number of samples of aircraft measurements, Lu et al. (2012) and Guo et al. (2015) estimated 

the entrainment rates for shallow convective clouds over the US Southern Great Plains (SGP) and 

deep convective clouds over the western Pacific, respectively. Their results revealed that in both 

regimes the entrainment rate (𝜆; in units of km-1) follows a lognormal distribution: 

𝑓(𝜆) =
1

𝜆𝜎√2𝜋
𝑒−

1

2
(

ln(𝜆/𝜂)−𝜇

𝜎
)

2

 , (1) 

but the values of 𝜇 and 𝜎 (i.e., the mean value and standard deviation of ln(𝜆), respectively) are 

different between the shallow and deep convective regimes. Here, we add a scaling factor 𝜂 in Eq. 

1 that is set to 1.0 by default, aiming to adjust the mean value of ln(𝜆) from 𝜇 to 𝜇 + ln(𝜂). 

Therefore, we can use one lognormal distribution to cover the entire moist convective regimes by 

allowing the width of the spectrum (i.e. 𝜂) to decrease with the development of convection (see 

section 2.2). In Eq. 1, 𝜇  and 𝜎  are set to 0.5 and 0.65, respectively. As 𝜂  decreases, the 

distribution gradually evolves from the shallow convective regime as in Lu et al. (2012) toward the 

deep convective regime as in Guo et al. (2015). 

The value of 𝜆0 corresponding to the shallowest deep convective plume is used to partition 

mass fluxes between deep and shallow convection (i.e., 𝑀deep and 𝑀shallow) (Fig. 1), and those 

with entrainment rates above and below 𝜆0  are categorized as shallow and deep convection, 

respectively. The partitioning is performed at the height of LCL (i.e., 𝑧LCL) where the mass flux 

diagnosed in CLUBB has a close relationship with the strength of moist shallow convection. 

According to the entrainment distribution 𝑓(𝜆)  in Eq. 1, the relationship between 𝑀deep  and 

𝑀shallow at LCL is given by: 

𝑀deep(𝑧LCL) = 𝑀shallow(𝑧LCL)
∫ 𝑓(𝜆)𝑑𝜆

𝜆0
𝜆min

∫ 𝑓(𝜆)𝑑𝜆
+∞

𝜆0

 , (2) 
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where 𝜆min  is the minimum entrainment rate for deep convection. Because 𝜆  is inversely 

proportional to cloud radius as indicated by previous studies (e.g., Kain, 2004; de Rooy et al., 2013), 

the value of 𝜆min corresponds to the largest cloud that needs to be parameterized. When the model 

grid spacing approaches the convection-permitting scale, some large deep convective clouds can be 

explicitly resolved, and 𝜆min should increase accordingly for scale-aware purpose. Given that the 

probability for entrainment rate between 0 and 0.1𝜂 is below 0.1%, which is almost negligible, 

here we set 𝜆min = 0.1𝜂 km−1 for the experiments performed in this study that are all configured 

with a resolution of 2 degrees (see section 3). Then, the mass flux of deep convection can be obtained 

from Eq. 2 once we know the mass flux associated with shallow convection derived from the 

distribution of vertical velocity (𝑤) primarily provided by CLUBB: 

𝑀shallow(𝑧LCL) = 𝜌 ∫ 𝑤 ∙ 𝑔(𝑤)𝑑𝑤
+∞

𝑤min
,  (3) 

where 𝑤min = 0.1 m s−1 is the threshold of vertical velocity for shallow convection. Lu et al. 

(2012) found that changing the threshold from 0.0 m s-1 to 0.5 m s-1 has only a weak impact on the 

estimated entrainment rate. 𝑔(𝑤) is the probability density function of 𝑤 at LCL. In CLUBB, 𝑤 

follows a double Gaussian distribution, which is skewed to the higher values of 𝑤 when shallow 

convection is present, complicating the calculation of Eq. 3. For convenience, we treat 𝑔(𝑤) as a 

normal distribution with its standard deviation determined by both the sub-grid information in 

CLUBB and the cold pool effects from deep convection (see section 2.2).  

In the original ZM scheme, the minimum entrainment rate for deep convection is zero and the 

mass flux of the updraft cloud ensemble at each level (z) is formulated as: 

𝑀deep(𝑧) = 𝑀deep(𝑧𝑏) ∫
1

𝜆0
𝑒𝜆(𝑧−𝑧𝑏)𝑑𝜆

𝜆𝐷(𝑧)

0
, (4) 
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where 𝑧𝑏  is the height of the convection launch layer and 𝜆𝐷(𝑧)  is the entrainment rate 

corresponding to the plume that detrains at height z. Given that the minimum entrainment rate is set 

to 𝜆min in the new closure, we update Eq. 4 as: 

𝑀deep(𝑧) = 𝑀deep(𝑧𝑏) ∫
1

𝜆0−𝜆min
𝑒𝜆(𝑧−𝑧𝑏)𝑑𝜆

𝜆𝐷(𝑧)

𝜆min
  

       = (
𝑀deep(𝑧𝑏)

(𝜆0−𝜆min)(𝑧−𝑧𝑏)
) (exp(𝜆𝐷(𝑧)(𝑧 − 𝑧𝑏)) − exp(𝜆min(𝑧)(𝑧 − 𝑧𝑏))). (5) 

Note that in the original ZM scheme, mass flux at the convection launch layer, i.e., 𝑀deep(𝑧𝑏), is 

directly computed based on CAPE, while in the revised scheme, 𝑀deep(𝑧𝑏)  is calculated from 

𝑀deep(𝑧LCL) (in Eq. 2) based on the vertical profile of mass flux (i.e., Eq. 5). 

 

2.2 Impacts of convection feedback  

Convection has its own memory. Idealized cloud-resolving model simulations by Colin et al. 

(2019) revealed that the spatial variability in water vapor and temperature, especially in the lower 

troposphere induced by convection can affect convection in the following 2-3 h (24 h) for 

unorganized (organized) cases. By contrast, the impacts of hydrometeors or winds are much weaker. 

Precipitation itself has negligible memory and removing in-cloud hydrometeor information in the 

model has very weak effect on the upcoming convection. However, surface precipitation rate can 

be used as an effective indicator of convection intensity, convective cloud size, as well as 

interactions among multiple processes that are potentially related to convection memory, such as 

the evaporation-driven cold pool and spatial variability in water vapor and moist static energy. For 

example, Harrop et al. (2018) parameterized the effects of convective gustiness as a function of 

surface convective precipitation rate. Mapes and Neale (2011) used precipitation evaporation as a 

source for convection organization. In this study, we use the surface deep convective precipitation 
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rate (𝑃𝑑) from the previous time step to parameterize the deep convection memory (A): 

𝜕𝐴

𝜕𝑡
= 𝛼 ∙ 𝑃𝑑 −

𝐴

𝜏
.  (6) 

The first and second terms on the right-hand-side of Eq. 6 represent the production and dissipation 

rates of A, respectively. Here, 𝜏 is set to 7200 s, close to the recovery time of 2-3 h in Colin (2019) 

for unorganized convection. The value of A is carried over time but reset to 0 when its value is below 

0.05. We set 𝛼 2233 mm-1. Given that the ratio of global mean precipitation to precipitation 

evaporation is approximately 3:1, the generation rate of A in Eq. 6 is comparable to that 

parameterized by Mapes & Neale (2011), in which the increase of the organization degree per unit 

of evaporation is 2 mm-1. However, it is more suitable to consider A in Eq. 6 as an index for the 

maturity of individual convective cells rather than organization at the mesoscale, which generally 

represents the spatial aggregation of convective cells and is accompanied by remarkable contrasts 

between moist and dry regions in a model grid point.  

In this study, A can affect deep convection in two ways. First, cloud size (or radius), which can 

increase with the development of convection, is a key factor governing the width of the entrainment 

distribution 𝜂 (in Eq. 1). Here we let cloud radius increase by a factor of 𝑎 when A (in Eq. 6) 

increases from 0 to 1, which further leads to decreased entrainment rate (Kain, 2004; de Rooy et al., 

2013). We set 𝑎 = 0.5, producing a relative change in cloud radius half of that applied in the Kain–

Fritsch convective parameterization, which uses a range of 1–2 km for cloud radius (Kain, 2004). 

However, one can image that when shallow cumuli dominate, they rarely produce surface 

precipitation (that is used to parameterize A) but can still grow horizontally as shallow convection 

develops, further increasing the probability for convective plumes extending above z0 

(corresponding to the shallowest plume in ZM). To consider this process, 𝜂 is allowed to vary with 
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the ratio of water vapor flux of shallow convection at z0 to that at LCL, i.e., QFX𝑧0
/QFXlcl provided 

by CLUBB. This vertical-scale ratio can approximately reflect the changes in the shallow plume 

width because larger clouds sampled at LCL will more likely reach the level of z0, with a higher 

QFX
𝑧0

/QFX
lcl

 due to weaker dilution from entrainment. The above assumption is similar to that 

applied in the MYNN (i.e., Mellor–Yamada–Nakanishi–Niino)–EDMF scheme (Olson et al., 2019), 

which also links the shallow plume widths to a vertical scale, i.e., the boundary-layer height. As 

deep convective clouds start to rain, the entrainment distribution should become more dependent on 

the characteristics of deep convection (i.e., A in this study). Finally, the evolution of 𝜂 is given by: 

𝜂 = 𝜂0min (
1

1+𝑎𝐴
,

QFXlcl

𝑏∙QFX𝑧0

),  (7) 

where 𝑏 is a tunable parameter and is set to 2 in this study. It indicates that 𝜂 is determined by the 

smaller one of the two terms on the right-hand side of Eq. 7 to reflect the different roles of shallow 

and deep convection at different stages. 𝜂0 represents the value of 𝜂 when convection just starts, 

the impacts of which will be discussed in section 4.1. 

Second, as deep convection develops, the evaporation of precipitation can drive cold pool that 

further enhances the spatial variability of the upward velocity 𝑤. This is mainly because of the 

increased boundary-layer inhomogeneities in temperature (Mapes and Neale, 2011) and secondary 

updrafts due to strong outflows associated with the gust front (Feng et al., 2015), both of which can 

be assumed to rise in proportion to convection memory or surface precipitation rate (Mapes and 

Neale, 2011; Harrop et al., 2018). The impact of cold pool on the standard deviation of 𝑤 at LCL 

(i.e. 𝜎wlcl) is formulated as: 

𝜎wlcl = √𝜎clubb
2 + 𝜎cold_pool

2,  (8) 
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where 𝜎clubb  is the standard deviation of 𝑤  provided by CLUBB and 𝜎cold_pool  is that 

contributed by cold pool, which is parameterized as 𝐴 ∙ 𝜎0 . We set 𝜎0  to 0.5 m s-1, with its 

magnitude comparable to the daily-maximum value of 𝜎clubb. 

2.3 Unrestricted launch level for deep convection 

In the original ZM parameterization, the launch level of deep convection is restricted within 

the boundary layer. However, earlier studies suggested that nocturnal convection is often elevated, 

with the most unstable air located above the boundary layer and the launch level decoupled from 

the surface over the US Great Plains (Geerts et al., 2017; Marsham et al., 2011; Xie et al., 2014). 

Wang et al. (2015) and Xie et al. (2019) found that using an unrestricted launch level (ULL) trigger 

that allows the convective updrafts to be launched above the boundary layer can greatly improve 

the simulations of nocturnal convection. 

In this study, we follow the ULL concept in the revised ZM scheme that searches the convection 

launch level within the lowest 400 hPa above the surface rather than in the boundary layer. 

3 Experiments, data, and methods  

3.1 Experimental design 

We use the CESM version 1.2.1 with the Community Atmosphere Model version 5 (CAM5) 

model physics (Neale et al., 2010). The PBL turbulence, shallow convection, and macrophysics are 

represented by CLUBB (Bogenschutz et al., 2013). First, two SCM cases (ARM95 and TWP06) are 

selected to test the performance of the revised ZM scheme. The large-scale forcing data for the SCM 

experiments are derived from the CESM input repository (https:33svn-ccsm-

inputdata.cgd.ucar.edu3trunk3inputdata3atm3cam3scam3iop3), containing meteorological fields 

https://svn-ccsm-inputdata.cgd.ucar.edu/trunk/inputdata/atm/cam/scam/iop/
https://svn-ccsm-inputdata.cgd.ucar.edu/trunk/inputdata/atm/cam/scam/iop/
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collected during two Intensive Observation Periods (IOPs) at the SGP site (262.5°E, 36.6°N) from 

18 July to 3 August 1995 and at the Tropical western Pacific (TWP) site (130.891°E, 12.425°S) 

from 17 January to 12 February 2006. For each case, we conduct three experiments (i.e. 

CTL_ARM953REV1_ARM953REV2_ARM95 for the ARM95 case and CTL_TWP063 

REV1_TWP063REV2_TWP06 for the TWP06 case; see Table 1). Taking the ARM95 case as an 

example, CTL_ ARM95 uses the original ZM scheme, while both REV1_ ARM95 and REV2_ 

ARM95 use the revised ZM scheme but with the parameter 𝜂0 (eq. 7) set to 1 and 0.5, respectively.  

Then, two GCM experiments (i.e., CTL and REV; Table 2) are conducted, which use the 

original and revised ZM scheme, respectively. Different from the SCM experiments, we set 𝜂0 =

0.5 over land and 𝜂0 = 1 over oceans in the GCM experiment with the revised scheme (i.e., REV). 

The reason is explained in section 4.1. We also conduct two additional GCM experiments, i.e. 

REV_ULL0 and REV_CF0. In REV_ULL0, the revised ZM scheme is used except that the 

convection launch level is still searched within the boundary layer. In REV_CF0, the value of A (Eq. 

6) is always set to zero, so as to isolate the effects of the revised mass-flux closure from that of the 

deep convection feedback. To make the averaged entrainment rate and thus the convection intensity 

comparable to that in REV, in REV_CF0 we set 𝜂0 = 3/8 over land and 𝜂0 = 3/4 over oceans, 

both of which are in the varying range of 𝜂 in REV. All the GCM experiments are run for 11 years 

forced by the observed climatological-mean monthly sea surface temperature (SST), with the last 

10 years used for the analyses. The model is configured with a horizontal resolution of 2.5° 

longitude×1.9° latitude and 30 vertical hybrid levels. 

3.2 Observational datasets 
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The Tropical Rainfall Measuring Mission (TRMM; Huffman et al., 2007) 3B42 version 7 

(available at ftp:33disc2.nascom.nasa.gov3data3TRMM3Gridded) precipitation data from 2001 to 

2010 are used for model evaluation on various scales. The TRMM data has a grid spacing of 0.25 

degree with at a 3-h interval. The daily precipitation data from the Global Precipitation Climatology 

Project (GPCP; Adler et al., 2003) is used to evaluate the simulated MJO precipitation. In addition, 

the hourly rain-gauge data from the National Meteorological Information Center of China 

Meteorological Administration is used for evaluating the precipitation diurnal cycle simulation over 

China. 

3.3 Analysis method 

All of the observational data are interpolated onto the model grids using bilinear interpolation 

before comparisons. At each grid point, the intraseasonal component of precipitation associated with 

MJO is derived via a band‐pass filter of 20–90 days. 

When evaluating the simulated precipitation diurnal variation, precipitation at each hour of a 

day (i.e., 𝑃(ℎ)) is normalized by the daily-mean precipitation (i.e., 𝑃mean): 

𝑁(ℎ) =
𝑃(ℎ)−𝑃mean

𝑃mean
,  (9) 

where N(h) is the normalized hourly precipitation.  

4 Results  

4.1 Precipitation simulations in SCM 

In this subsection, we briefly evaluate the performance of the revised scheme during the two 

IOPs of ARM95 and TWP06. The observed and simulated time series of precipitation are given in 

ftp://disc2.nascom.nasa.gov/data/TRMM/Gridded
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Fig. 2. For both the ARM95 and TWP06 cases (top and bottom columns in Fig. 2, respectively), the 

simulations with the original ZM scheme (red lines) can capture the main precipitation events as in 

the observations (black lines) although some apparent model biases exist. The simulated 

precipitation using the revised scheme (with 𝜂0 = 1) (blue lines) is slightly different from that using 

the default scheme, but the overall model skills with the two schemes are comparable with each 

other. Meanwhile, both of the two schemes can realistically capture the vertical distributions of the 

total diabatic heating associated with precipitation (Figs. S1 and S2), with strong heating rate at 

levels from 700 to 200 hPa during periods when strong precipitation events are present. 

In the revised scheme, 𝜂0 governs the overall strength of the convective entrainment. We find 

that in the two selected SCM cases, adjusting the value of 𝜂0 from 1 to 0.5 has a weak effect on 

the precipitation simulations based on the time series (Fig. S3). Figure 3 shows the observed and 

simulated diurnal variations of precipitation averaged during the IOP of ARM95. We can see that 

the observed precipitation (black line) peaks at 15 Local Solar Time (LST). By contrast, the 

experiment with the original scheme produces two peaks at 13LST and 20LST (red line), 

respectively, with the first peak mainly contributed by convective precipitation (figure not shown) 

(because the CAPE-type closure often simulates a too-early onset of convection; Zhang, 2002). 

When using the revised scheme, the simulated precipitation (blue lines) peaks at around 18LST, 

later than that in observation. Decreasing the value of 𝜂0 from 1.0 (blue dashed line) to 0.5 (blue 

solid line) tends to make convection initiate earlier.  

In Fig. 4 we examine the impacts of 𝜂0 on the diurnal variations of several elements related 

to convection memory, including the ratio of water vapor fluxes 
QFX𝑧0

QFXlcl
 (Eq. 7), deep convection 

memory (i.e., A in Eq. 6), the scaling factor for entrainment rate (i.e., 𝜂/𝜂0  in Eq. 7), and the 
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maximum entrainment rate assigned to deep convection (i.e., 𝜆0 in Eq. 2). The results are generally 

consistent between the two experiments with different values of 𝜂0 , except that the diurnal 

variations in 𝜂/𝜂0 (blue line) and A (red line) are stronger when a lower value of 𝜂0 is applied 

(Fig. 4b). It shows that A increases with precipitation after 14LST (Fig. 3), although 𝜆0 (green line 

in Fig. 4) decreases during this period that is not favorable for the development of deep convection 

(based on Eq. 2). Hence, the increased A is mainly due to the enhanced shallow convective mass 

flux (based on Eq. 2; figure not shown) and larger 
QFX𝑧0

QFXlcl
 (black line in Fig. 4) that acts to decrease 

𝜂 (based on Eq. 7). Improving the representation of the evolution of 𝜂 (i.e., Eq. 7) along with 

parameter optimization might improve the simulation of the precipitation diurnal cycle. 

Different from the SCM results, GCM simulations indicate that convective precipitation is 

often too weak (strong) over the tropical land (oceans) when 𝜂0 = 1  ( 𝜂0 = 0.5 ) (Fig. S4), 

indicating that we cannot simultaneously improve the convective precipitation simulation over the 

tropical land and oceans with a globally uniform value of 𝜂0 . This might be because 𝜂0  is 

dependent on the background meteorological conditions, such as the upward velocity variability at 

LCL, atmosphere instability, and so on. At this stage, we set 𝜂0 = 0.5 over land and 𝜂0 = 1 over 

oceans in the GCM experiment REV (Table 2). In the following subsections, the analyses are mainly 

based on the GCM experiments. 

4.2 Precipitation climatology  

In Fig. 5 we evaluate the annual mean precipitation from simulations (averaged over the last 

10 years) with different convective schemes against the TRMM observation (2001-2010). 

Compared to the TRMM result (Fig. 5a), clear biases are seen in the CTL experiment with the 
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original scheme (Fig. 5b), such as the underestimated precipitation over the TWP and the Bay of 

Bengal (BOB), as well as the overestimated precipitation over the southeastern Pacific (i.e., the 

double-ITCZ problem). Over East Asia, the CTL experiment underestimates the midlatitude storm 

track precipitation over oceans to the south and east of Japan. Meanwhile, it underestimates 

(overestimates) the precipitation over the southern coastal (inland) regions of China, failing to 

capture the south to north and coastal to inland pattern of decreasing precipitation there. In the REV 

experiment with the revised scheme (Fig. 5c), the above precipitation biases are all reduced to some 

degree, making the precipitation simulations agree more with the observation in terms of both 

magnitude and spatial pattern in many regions. For example, the double-ITCZ problem is less 

obvious, which can also be clearly seen in the meridional distribution of precipitation averaged over 

the eastern Pacific (160ºW–90ºW) (Fig. 6). However, the northern ITCZ is overestimated by using 

the revised closure (blue line in Fig. 6). When turning off the ULL option in the revised scheme (i.e. 

the REV_ULL0 experiment), the results (Fig. 5d) are generally consistent with those in REV, 

suggesting that the improved precipitation climatology in REV compared to that in CTL is mainly 

due to the modifications related to the mass-flux closure and the convection feedback effects, with 

the two individual impacts discussed in section 4.6. 

We further compare the simulated precipitation averaged in June-July-August (JJA) and 

December-January-February (DJF) against the observation (Fig. 7). In JJA, large precipitation 

amounts are observed over the BOB, eastern equatorial Indian Ocean (EIO), northern-ITCZ, and 

TWP (Fig. 7a). There exists a clear rain-belt from China to Japan, which is associated with the East 

Asian summer monsoon (EASM). The CTL experiment (Fig. 7c) fails to capture the strong 

precipitation over the TWP, with the rainfall center shifted southward to the Maritime Continent 
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compared to the observation. Meanwhile, the EASM precipitation is too weak. In addition, the CTL 

experiment underestimates (overestimates) the precipitation over the eastern (western) EIO, 

exhibiting an Indian Ocean dipole-like bias that is also seen in many other GCMs (Li et al., 2015). 

The REV experiment with the revised scheme better simulates the precipitation distribution over 

the broad western Pacific region, including the EASM region, Maritime Continent, and TWP (Fig. 

7e). However, the underestimated precipitation over the eastern EIO becomes more apparent which 

deserves further investigations. 

In DJF, large precipitation amounts are observed over the Maritime Continent, the northern-

ITCZ, and the South Pacific Convergence Zone (SPCZ) (Fig. 7b). A strong rainfall center is also 

seen in the Amazon region. The CTL experiment underestimates the SPCZ precipitation, especially 

in the areas to the east of Australia (Fig. 7d). This bias is alleviated to some extent in the REV 

experiment (Fig. 7f). 

Overall, the above results indicate that the revised ZM scheme can realistically capture the 

main features in the mean state of precipitation and perform better than the original scheme in many 

aspects.  

4.3 Seasonal variation of precipitation 

Rainfall centers experience strong south-north oscillation following the seasonal variation in 

SST that is primarily driven by the solar radiation. Previous studies revealed that the strength of the 

double ITCZ varies with seasons (Zhang et al. 2019). Figure 8 shows the month-latitude 

distributions of precipitation over the eastern Pacific (160ºW-90ºW) in both the TRMM observation 

and simulations. In the observation (Fig. 8a), the main rain-belt in the northern ITCZ is situated 
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around 8ºN and reaches its northernmost and southernmost location in September and March, 

respectively. Compared to the northern component, the precipitation in the southern oceans is much 

weaker, with its maximum magnitude around 4 mm day-1 from March to April. The CTL experiment 

(Fig. 8b) can reasonably simulate the seasonal variation of precipitation in the northern ITCZ, but 

largely overestimates the southern ITCZ precipitation in March and April, consistent with the results 

shown in Figs. 5 and 6. By contrast, the intensity of the southern ITCZ is markedly reduced in the 

REV experiment (Fig. 8c). The result from REV_ULL0 is not presented here because it is largely 

consistent with that from REV.  

The seasonal migration of precipitation is a prominent phenomenon over the monsoon regions. 

Around the globe, East Asia is a distinct region where the precipitation climate is dominated by the 

evolution of monsoon. Figure 9 presents the month-latitude distributions of precipitation over East 

Asia and its adjacent ocean areas (105ºE-130ºE). In the observation (Fig. 9a), the precipitation 

maximum is located south of the equator from December to April and gradually migrated to 20ºN 

from May to August, corresponding to the onset of the Western North Pacific summer monsoon. 

Then, it retreats back to the south. A separate rain-belt forms in May between 20ºN and 30ºN and 

extends to 40ºN in July and August, corresponding to the northward advance of the EASM 

precipitation. The CTL experiment (Fig. 9b) produces large biases in the seasonal variation of 

precipitation over East Asia, especially to the south of 20ºN. For example, the precipitation 

maximum is always located around the equator throughout the year, consistent with the too weak 

precipitation over TWP in JJA (Fig. 7c). Meanwhile, the EASM precipitation is largely 

underestimated, particularly in July and August. In contrast, the REV experiment (Fig. 9c) can well 

capture the seasonal variation of precipitation in the tropical oceans and better simulate the EASM 
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precipitation in terms of both mean magnitude and seasonal migration. 

 

4.4 The MJO precipitation 

Figure 10 shows the time lag–longitude distributions of correlation coefficients of the 

intraseasonal component of precipitation averaged from 10°S to 10°N with that averaged in two 

reference regions, i.e. the Indian Ocean region (70°E–90°E, 5°S–5°N; left column of Fig. 10) and 

the western Pacific Ocean (130°E–150°E, 5°S–5°N; right column of Fig. 10), which are often 

applied to characterize the MJO activity (e.g., Boyle et al. 2015). The plots are derived based on the 

precipitation data from November to April when the MJO activity is the most prominent. In the 

observation (Figs. 10a and 10b), we can see a notable eastward propagation of the MJO precipitation 

anomaly from Indian Ocean to the western Pacific Ocean. However, the CTL experiment (Figs. 10c 

and 10d) simulates a westward propagation of the precipitation anomalies, opposite to that in the 

observation. The MJO simulation in REV (Figs. 10e and 10f) is improved to some degree compared 

to that in CTL, although the eastward propagation is still less obvious than in the observation. We 

consider that the low skill of the MJO simulation in CTL is largely because convection often occurs 

too easily in the original ZM scheme. Previous studies have shown that tuning several key 

parameters in the convective scheme can considerably improve the MJO simulation (Boyle et al. 

2015; Liu et al. 2019). Our preliminary test experiments also indicate that the MJO simulation in 

REV can be further improved when the overall intensity of convection is suppressed via using a 

different value for 𝜂0 or 𝑎 in Eq. 7.  

4.5 Precipitation diurnal variation 

Many previous studies have demonstrated the important roles of the transition from shallow to 
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deep convection in regulating the precipitation diurnal variations (Rio et al. 2009; Yang et al. 2020). 

Figure 11 shows the spatial patterns of the diurnal peak time (i.e. the hour corresponding to the 

daily-maximum precipitation) for the annual mean precipitation in the TRMM observation and 

different simulations. In the TRMM (Fig. 11a), precipitation often peaks at around 17LST over land, 

except for some subtropical and midlatitude areas, such as those adjacent to the Tibetan Plateau (TP) 

over East Asia and east of Rocky Mountains over North America, where nighttime precipitation 

maximum can be observed as revealed in previous studies (e.g., Dai et al., 1999). Over oceans, 

precipitation generally peaks during nighttime or early morning. 

All the simulations with different convective schemes can well capture the nighttime 

precipitation peaks over oceans as in the observation (Figs. 11b-11d). However, large biases and 

inter-model differences are found over land. In the CTL experiment (Fig. 11b), precipitation over 

tropical land often shows noontime diurnal peaks, which are much earlier than that in the 

observation. Meanwhile, the CTL experiment fails to produce the nighttime precipitation peak over 

regions east of TP or Rocky Mountains. 

In the REV experiment (Fig. 11c), adopting the revised scheme improves the simulations of 

the precipitation diurnal features over many tropical land regions, with the peak time delayed from 

12LST to around 15LST which is still about 2-3h earlier than that in the observation. Moreover, the 

revised scheme can reproduce the nighttime peaks of precipitation over East Asia and North 

America. However, the areas with nighttime peaks are much wider than in the observation. In the 

REV_ULL0 experiment with the ULL option turned off (Fig. 11d), the nighttime precipitation peaks 

are still clearly seen over East Asia and North America but the associated areas are largely reduced 

compared to the REV simulations. However, the simulated diurnal peaks over the tropical land are 
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too early, similar to that in CTL. These results indicate that both the ULL configuration and the 

modifications related to the mass-flux closure and convection feedback impacts can affect the 

simulations of the precipitation diurnal variations. 

We further evaluate the simulated diurnal variations of the summertime mean (i.e. JJA) 

precipitation over the US (Fig. 12), which is usually hard to represent by the traditional convective 

parameterizations (Xie et al., 2019). In the TRMM (Fig. 12a), precipitation is featured by late-

afternoon diurnal peaks over the western and southeastern parts of the US and nighttime peaks over 

the Great Plains, exhibiting a propagating feature of the diurnal peak time east of Rocky Mountains. 

The CTL experiment with the original ZM scheme (Fig. 12b) well captures the late-afternoon 

precipitation peaks over the western and southeastern regions but fails to simulate the nighttime 

peaks over the Great Plains. By contrast, in the REV experiment with the revised scheme (Fig. 12c), 

the spatial distribution of the diurnal peak time is improved to a large degree. In REV_ULL0 (Fig. 

12d), the nighttime peak is also seen but only over a limited region east of Rocky Mountains. We 

also conduct a 11-year experiment using the original ZM scheme but with the ULL option turned 

on, in which the nighttime diurnal peaks are better simulated but still weaker than in the TRMM 

(figure not shown). These results confirm that different modifications to the ZM scheme can 

individually affect the simulation of the precipitation diurnal variation over this region.  

Figure 13 further illustrates the propagating feature of the diurnal peak time of precipitation 

(normalized value based on Eq. 9) over the areas east of Rocky Mountains. In the TRMM (Fig. 13a), 

precipitation shows a strong diurnal peak at around 18LST over Rocky Mountains (i.e., west of 

105°W). To the east (i.e., 105°W-90°W), the diurnal peak time gradually shifts from late afternoon 

(i.e. 18LST) to early morning (i.e. 05LST). The CTL experiment (Fig. 13b) fails to simulate the 
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propagation. By contrast, the REV experiment (Fig. 13c) with the revised scheme well captures such 

feature, consistent with the results shown in Fig. 12c. In REV_ULL0, the shift in the precipitation 

diurnal peak time is also partly reproduced but the propagation signal disappears at around 102°W.  

In Fig. 14 we compare the simulated diurnal variations of precipitation over the EASM region 

against the TRMM and rain-gauge records. Previous studies have revealed that the EASM 

precipitation is characterized by complex diurnal features (Yu et al., 2007). The distributions of the 

diurnal peak time are different in the TRMM and in the rain-gauge records (Fig. 14a vs. Fig. 14e). 

For example, the rain-gauge precipitation over China is featured by late-afternoon peaks over the 

southeastern coastal areas and nighttime peaks over most inland areas to the south of 40°N. While 

in the TRMM, the nighttime precipitation peak is rarely seen to the east of 110°E. The convective 

scheme has strong impacts on the precipitation diurnal variation simulations over East Asia (Figs. 

14b-14d). The CTL experiment (Fig. 14b) simulates a too early peak over southeastern China and 

fails to capture the nighttime peaks to the north. By contrast, the revised scheme (Fig. 14c) slightly 

delays the late afternoon peaks over southeastern China. It can also reproduce the nighttime peaks 

but over a much wider region than in the observations (Figs. 14a and 14e). The simulated 

precipitation diurnal features in REV_ULL0 are generally consistent with that in CTL, except that 

REV_ULL0 performs better in capturing the nighttime precipitation peaks over the Sichuan Basin 

(around 105°E and 30°N) 

The simulated propagation of the precipitation diurnal feature east of TP is also compared 

against observations in Fig. 15. In both the TRMM (Fig. 15a) and rain-gauge records (Fig. 15e), the 

precipitation diurnal peak gradually shifts from around 20LST to 06LST downstream of TP (i.e., 

100°E-110°E). As revealed previously (e.g., Yang et al., 2020), the original ZM scheme has 
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difficulty in simulating the propagating feature and nighttime peaks along the regions east of TP 

(Fig. 15b). Notably, the REV experiment performs much better in this regard (Fig. 15c). The 

REV_ULL0 experiment can also well capture the propagating feature of the precipitation diurnal 

peak there (Fig. 15d). 

4.6 Impacts of convection feedback 

In the above subsections we have demonstrated the benefits of using the revised ZM scheme 

in simulating the mean state and variability of precipitation. However, it is unclear how the two 

modifications related to the mass-flux closure (i.e., section 2.1) and the convection feedback impacts 

(i.e., section 2.2) contribute to the improved model behaviors individually. Here, an additional 

experiment REV_CF0 with the convection feedback effects turned off is used to further understand 

the individual impacts of the two components. Figure 16 shows the annual mean precipitation 

distribution simulated in REV_CF0, which is generally consistent with that in REV (Fig. 5c) in 

terms of both magnitude and spatial pattern, except that the precipitation amount over Amazon is 

smaller in REV_CF0 than in REV. The precipitation distributions averaged in JJA and DJF are also 

largely consistent between the two simulations (Fig. S5 vs. Figs. 7e and 7f), indicating that the 

improved mean state of precipitation in REV is mainly contributed by the modification related to 

the mass-flux closure. 

Figure 17 shows the lag‐longitude distributions of correlation coefficients of band-pass 

filtered (20-90 days) precipitation (averaged for 10°S-10°N) with precipitation averaged over the 

Indian Ocean region and the western Pacific region in REV_CF0. We can see that in REV_CF0 the 

simulated MJO precipitation is improved to a large degree compared to that in CTL (Figs. 10c and 
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10d) and even better than that in REV (Figs. 10e and 10f). We find that the overall convection 

intensity is weaker in REV_CF0 than in REV although a smaller value of 𝜂0  is applied. The 

relatively weaker convection in REV_CF0 is likely responsible for the better-simulated MJO 

precipitation. 

It has been suggested that the convection feedback impacts are of vital importance to the 

simulations of precipitation diurnal cycle across various climate regimes. In Fig. 18 we show the 

spatial distribution of the diurnal peak times for the JJA mean precipitation over the US simulated 

by REV_CF0. Notably, with the convection feedback impacts turned off, the model can still capture 

the nighttime peaks of precipitation downstream of Rocky Mountains and thus the propagating 

feature there. However, the simulated diurnal peaks are too early over the southeastern region of the 

US. Similarly, the REV_CF0 experiment also fails to capture the late-afternoon peaks of 

precipitation over southeastern China (Fig. S6) and over the tropical land (figure not shown), 

probably because the transition from shallow to deep convection is important there and the 

convection feedback impacts need to be explicitly or implicitly parameterized in climate models. 

5 Summary and discussions  

In this study, we modified the closure of the ZM convective parameterization in CAM5 and 

coupled it with CLUBB to provide a unified treatment for sub-grid vertical motions across regimes 

of boundary-layer turbulence, shallow convection and deep convection. Instead of using CAPE as 

a closure for the ZM scheme, by assuming a lognormal distribution to represent the spectrum of 

entrainment rates across the entire moist convective regimes, we link mass flux for deep convection 

to that of shallow convection, which is determined by the sub-grid information of vertical velocity 
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in CLUBB. The modified mass-flux closure improves the consistency between shallow and deep 

convection, as well as between the deep convective closure and updraft plumes in the ZM scheme. 

In addition, the convection feedback effects were considered to decrease the entrainment spectrum 

width and enhance the vertical velocity variability that further affect deep convection. We also 

included a ULL concept that allows the ZM scheme to search the convection launch level above the 

boundary-layer height so as to improve the precipitation diurnal variation. 

First, the performance of the revised ZM scheme was evaluated with two SCM experiments, 

in which the simulated precipitation and associated atmospheric heating profiles are generally 

consistent with that using the original ZM scheme and with the observation. Then, we focused on 

the global simulations of precipitation in terms of the mean state and variability at various timescales. 

The revised scheme greatly improves the precipitation climatology, such as the alleviated double-

ITCZ problem, and better-simulated south-north distributions of precipitation over the TWP and 

East Asia. Meanwhile, the seasonal variations of precipitation associated with the Western North 

Pacific summer monsoon and EASM are improved to a large degree. The MJO precipitation is also 

improved by using the revised scheme. 

The revised scheme can considerably improve the precipitation diurnal variations over land. 

For example, the diurnal peak time of precipitation is delayed from 12LST to around 15LST, in 

better agreement with the observation (i.e. 17LST). Meanwhile, the revised scheme can realistically 

capture the propagating features of the precipitation diurnal variation downstream of TP and Rocky 

Mountains. When turning off the ULL option in the revised scheme, the model fails to capture the 

late-afternoon precipitation peaks over the tropical land, but still shows some skills in simulating 

the propagating features downstream of TP and Rocky Mountains, indicating that both the ULL 
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configuration and the modifications related to the mass-flux closure and the convection feedback 

impacts can affect the precipitation diurnal variation simulations. 

An additional experiment turning off the convection feedback effects was conducted to 

investigate how the modified mass-flux closure and the convection feedbacks contribute to the 

improved model behaviors individually. It showed that without the convection feedback impacts the 

improvements can still be seen in many aspects, such as the better-simulated precipitation 

climatology, MJO, and nighttime precipitation diurnal peaks downstream of Rocky Mountains, 

emphasizing the benefits of using the revised mass-flux closure. However, the simulated diurnal 

peaks are often too early over regions with late-afternoon precipitation peaks, likely because the 

convection feedback impacts are important for the gradual transition from shallow to deep 

convection over these regions. 

Overall, in this study we proposed to modify the ZM scheme that couples deep convection to 

shallow convection based on the sub-grid information in CLUBB, which helps improve the 

consistency between shallow and deep convection. The convection feedback impacts were also 

considered but large uncertainty is expected in the formulations (Colin et al. 2019). Further studies 

are needed to better characterize such effects using high-resolution model simulations. In addition, 

the organization of convection at the mesoscale was not included, which could potentially be 

parameterized via using the sub-grid atmospheric variability (i.e. humidity contrast between moist 

and dry regions) provided by CLUBB or produced by convection itself (e.g. Wing et al. 2017). 
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Table 1. A list of SCM experiments and the used convective parameterizations 

 

Experiment Closure  

CTL_ARM95 Original ZM parameterization 

REV1_ARM95 Revised parameterization with 𝜂0 = 1 

REV2_ ARM95 Revised parameterization with 𝜂0 = 0.5 

CTL_TWP06 Default ZM parameterization 

REV1_TWP06 Revised parameterization with 𝜂0 = 1 

REV2_ TWP06 Revised parameterization with 𝜂0 = 0.5 

 

 

 

 

 

Table 2. A list of GCM experiments and the used convective parameterizations 

 

Experiment Closure  

CTL Original ZM parameterization 

REV Revised parameterization  

REV_ULL0 Revised parameterization, but with convective launch level in the boundary layer 

REV_CF0 Revised parameterization, but with convection feedback impacts turned off 
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Figure captions: 

Fig. 1. Assumed probability density functions (PDFs) of entrainment rate (𝜆) for moist convection 

(i.e. shallow and deep convection). 𝜆0  (denoted by the black solid line) corresponds to the 

shallowest deep convective plume in the ZM scheme. 𝜂 is a scaling factor that varies with the 

development of convection, with the minimum entrainment rate for deep convection (i.e. 𝜆min) set 

to 0.1𝜂 km−1 (denoted by the black dashed line). 

Fig. 2. Times series of precipitation during IOPs of (a) ARM95 and (b) TWP06 from observations 

and simulations with the original and revised (𝜂0 = 1) schemes. 

Fig. 3. Diurnal variations of precipitation (mm hr-1) during IOP of ARM95 from observation and 

different simulations. 

Fig. 4. Diurnal variations of the ratio of water vapor fluxes between z0 and LCL (i.e., 
QFX𝑧0

QFXlcl
), deep 

convection memory (i.e., A), the scaling factor for entrainment rate (i.e., 𝜂/𝜂0), and the maximum 

entrainment rate assigned to deep convection (i.e., 𝜆0 ; km-1) in the simulations of (a) 

REV1_ARM95 and (b) REV2_ARM95. 

Fig. 5. Spatial distributions of annual mean precipitation from (a) TRMM and simulations of (b) 

CTL, (c) REV, and (d) REV_ULL0. Here and in the following, all the plots are based on model 

results from the last 10-year simulations and observations from 2001 to 2010. 

Fig. 6. Meridional distributions of annual mean precipitation averaged over the eastern Pacific 

(160ºW–90ºW) from TRMM and different simulations. 

Fig. 7. Spatial distributions of JJA (left) and DJF (right) mean precipitation from (a, b) TRMM 

and simulations of (c, d) CTL, (e, f) REV, and (g, h) REV_ULL0. 

Fig. 8. Seasonal variation (horizontal axis) of the meridional distributions of precipitation averaged 

over the eastern Pacific (160ºW–90ºW) from (a) TRMM and simulations of (b) CTL and (c) REV. 

Fig. 9. Same as Fig. 8 but for precipitation averaged over East Asia (105ºE–130ºE). 

Fig. 10. Lag‐longitude distributions of correlation coefficients of band-pass filtered (20–90 days) 

precipitation averaged for 10°S–10°N with precipitation averaged over the Indian Ocean region 
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(70°E–90°E, 5°S–5°N; left)) and the western Pacific region (130°E–150°E, 5°S–5°N; right) from 

November to April in (a, b) GPCP and simulations of (c, d) CTL, and (e, f) REV. 

Fig. 11. Diurnal peak times (Local Solar Time; LST) for annual mean precipitation from (a) TRMM 

and simulations of (b) CTL, (c) REV, and (d) REV_ULL0. Areas with mean precipitation below 2 

mm day-1 are masked out. 

Fig. 12. Diurnal peak times (LST) for JJA mean continental precipitation from (a) TRMM and 

simulations of (b) CTL, (c) REV, and (d) REV_ULL0 over the US. Areas with mean precipitation 

below 1 mm day-1 are masked out. 

Fig. 13. Diurnal–zonal distributions of JJA mean precipitation (normalized by daily mean value) 

averaged for 38°–42°N from (a) TRMM and simulations of (b) CTL, (c) REV and (d) REV_ULL0 

over the US.  

Fig. 14. Diurnal peak times (LST) for JJA mean continental precipitation from (a) TRMM and 

simulations of (b) CTL, (c) REV, (d) REV_ULL0 over East Asia. Results based on rain gauge station 

are shown in (e). Areas with mean precipitation magnitude below 1 mm day-1 are masked out. 

Fig. 15. Diurnal–zonal distributions of JJA mean precipitation (normalized by daily mean value) 

averaged for 28°–35°N from (a) TRMM and simulations of (b) CTL, (c) REV and (d) REV_ULL0 

over East Asia. Results based on rain gauge station is shown in (e). 

Fig. 16. Spatial distributions of annual mean precipitation from the REV_CF0 simulation. 

Fig. 17. Lag‐longitude distributions of correlation coefficients of band-pass filtered (20–90 days) 

precipitation averaged for 10°S–10°N with precipitation averaged over the Indian Ocean region 

(70°E–90°E, 5°S–5°N; left)) and the western Pacific region (130°E–150°E, 5°S–5°N; right) from 

November to April in the REV_CF0 experiment. 

Fig. 18. Diurnal peak times (LST) for JJA mean continental precipitation from the REV_CF0 

experiment over the US. Areas with mean precipitation below 1 mm day-1 are masked out. 
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Figures: 

 

 

 

Fig. 1. Assumed probability density functions (PDFs) of entrainment rate (𝜆) for moist convection 

(i.e. shallow and deep convection). 𝜆0  (denoted by the black solid line) corresponds to the 

shallowest deep convective plume in the ZM scheme. 𝜂 is a scaling factor that varies with the 

development of convection, with the minimum entrainment rate for deep convection (i.e. 𝜆min) set 

to 0.1𝜂 km−1 (denoted by the black dashed line). 
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Fig. 2. Times series of precipitation during IOPs of (a) ARM95 and (b) TWP06 from observations 

and simulations with the original and revised (𝜂0 = 1) schemes. 
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Fig. 3. Diurnal variations of precipitation (mm hr-1) during IOP of ARM95 from observation and 

different simulations. 
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Fig. 4. Diurnal variations of the ratio of water vapor fluxes between z0 and LCL (i.e., 
QFX𝑧0

QFXlcl
), deep 

convection memory (i.e., A), the scaling factor for entrainment rate (i.e., 𝜂/𝜂0), and the maximum 

entrainment rate assigned to deep convection (i.e., 𝜆0 ; km-1) in the simulations of (a) 

REV1_ARM95 and (b) REV2_ARM95. 
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Fig. 5. Spatial distributions of annual mean precipitation from (a) TRMM and simulations of (b) 

CTL, (c) REV, and (d) REV_ULL0. Here and in the following, all the plots are based on model 

results from the last 10-year simulations and observations from 2001 to 2010. 
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Fig. 6. Meridional distributions of annual mean precipitation averaged over the eastern Pacific 

(160ºW–90ºW) from TRMM and different simulations. 
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Fig. 7. Spatial distributions of JJA (left) and DJF (right) mean precipitation from (a, b) TRMM 

and simulations of (c, d) CTL, (e, f) REV, and (g, h) REV_ULL0. 
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Fig. 8. Seasonal variation (horizontal axis) of the meridional distributions of precipitation averaged 

over the eastern Pacific (160ºW–90ºW) from (a) TRMM and simulations of (b) CTL and (c) REV. 
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Fig. 9. Same as Fig. 8 but for precipitation averaged over East Asia (105ºE–130ºE). 
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Fig. 10. Lag‐longitude distributions of correlation coefficients of band-pass filtered (20–90 days) 

precipitation averaged for 10°S–10°N with precipitation averaged over the Indian Ocean region 

(70°E–90°E, 5°S–5°N; left)) and the western Pacific region (130°E–150°E, 5°S–5°N; right) from 

November to April in (a, b) GPCP and simulations of (c, d) CTL, and (e, f) REV. 
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Fig. 11. Diurnal peak times (Local Solar Time; LST) for annual mean precipitation from (a) TRMM 

and simulations of (b) CTL, (c) REV, and (d) REV_ULL0. Areas with mean precipitation below 2 

mm day-1 are masked out. 
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Fig. 12. Diurnal peak times (LST) for JJA mean continental precipitation from (a) TRMM and 

simulations of (b) CTL, (c) REV, and (d) REV_ULL0 over the US. Areas with mean precipitation 

below 1 mm day-1 are masked out. 
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Fig. 13. Diurnal–zonal distributions of JJA mean precipitation (normalized by daily mean value) 

averaged for 38°–42°N from (a) TRMM and simulations of (b) CTL, (c) REV and (d) REV_ULL0 

over the US.  
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Fig. 14. Diurnal peak times (LST) for JJA mean continental precipitation from (a) TRMM and 

simulations of (b) CTL, (c) REV, (d) REV_ULL0 over East Asia. Results based on rain gauge station 

are shown in (e). Areas with mean precipitation magnitude below 1 mm day-1 are masked out. 
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Fig. 15. Diurnal–zonal distributions of JJA mean precipitation (normalized by daily mean value) 

averaged for 28°–35°N from (a) TRMM and simulations of (b) CTL, (c) REV and (d) REV_ULL0 

over East Asia. Results based on rain gauge station is shown in (e). 

 

  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

 

 

 

Fig. 16. Spatial distributions of annual mean precipitation from the REV_CF0 simulation. 
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Fig. 17. Lag‐longitude distributions of correlation coefficients of band-pass filtered (20–90 days) 

precipitation averaged for 10°S–10°N with precipitation averaged over the Indian Ocean region 

(70°E–90°E, 5°S–5°N; left)) and the western Pacific region (130°E–150°E, 5°S–5°N; right) from 

November to April in the REV_CF0 experiment. 
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Fig. 18. Diurnal peak times (LST) for JJA mean continental precipitation from the REV_CF0 

experiment over the US. Areas with mean precipitation below 1 mm day-1 are masked out. 

 

 


